Lung MRI

No radiation !!

 Accurate diagnostic tool for both parenchymal, mediastinal and chest wall diseases!!

 Replacement of routine follow-up chest CT scans with MRI would significantly decrease the radiation exposure in children.

Today Thorax MRI for children

- Infectious and Inflammatory Diseases (e.g. Bacterial/Viral Pneumonia, Fungal Infections, Cyst Hydatid)
- Malignancy (Mediastinal masses, Primary Tumors of Lung and Metastasis, Chest Wall Tumors)
- Congenital Thorax Diseases (e.g. Congenital Diaphragm hernia, CPAM, Pulmonary Sequestration)
- Systemic Diseases (e.g. Cystic Fibrosis, Sarcoidosis)

Lung MRI Protocol

- Patient Preparation**
 - >5-6 years old: Coaching patients on breathing techniques → Breath-holding technique

- <5-6 years old : intranasal 0.1–0.2 mg/ kg
 Dormicum Roche, or general anesthesia
 - -Free breathing: Respiratory triggering*
 - –ECG triggering → cardiac pathologies!!

OUR LUNG MRI PROTOCOL

- Chest MRI: 1.5 Tesla MRI unit with a body coil.
- The protocol included (*contrast-enhanced) free breathing fast four sequences:
 - 1) T2-HASTE in coronal plane;
 - 2) T2-BLADE (or STIR) in axial and coronal planes;
 - 3) T2-TRUFI in sagittal or coronal plane;
 - 4) T1-VIBE fat saturated or non fs in axial plane;
 - 5) DWI (b=600-800 mm2/sec) in axial plane
 - 6) *Contrast-enhanced T1-VIBE fat saturated in axial plane (0.1 mmol/kg gadolinium)
 - Slice thickness= 4 mm
 - The duration= 6 min.10 sec ± 1.5 min. The average total time on the MRI table=10 ± 5 min.

Why fast sequences?

- High spatial resolution
- Short echo time (TE)
- Preferably for breath hold imaging
- To reduce the need for sedation
- Comparable with MDCT

T

Lung magnetic resonance imaging for pneumonia in children.
Liszewski MC, Görkem S, Sodhi KS, Lee EY . Pediatr Radiol. 2017 Oct;47(11):1420-1430.

C. OWENS

INFECTIOUS/INFLAMMATORY DISEASES

Malignancy

- Mediastinal
 - * Lymphoma, Leukemia, Germ cell tumors, Neurogenic tumors
- Chest Wall Tumors
- Parenchymal tumors
 - Metastatic disease
 - Osteosarcoma, Wilms tumor, neuroblastoma and Ewing's sarcoma
 - Primary lung tumors
 - Pleuropulmonary blastoma*** most common primary lung tumor

Nodule Detection

- Gorkem et al.; Two undiagnosed findings with MRI that were detected with MDCT were mild bronchiectasis and small pulmonary nodule (<3 mm).
- <u>Sodhi et al.</u>; MRI can emerge as the first line modality for the detection of <u>pulmonary nodules</u> (≤ 3cm) in children with leukemia and persistent febrile neutropenia.
- Sodhi et al.; MRI with a new rapid MRI protocol demonstrated sensitivity, specificity, PPV, and NPV of 100% for detecting pulmonary consolidation, nodules (>3 mm), cyst/cavity, hyperinflation, pleural effusion, and lymph nodes.

 ^{*}Gorkem SB et al. Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5- T MRI and contrast-enhanced MDCT. AJR;2013 Jun;200(6):1352-7.

 ^{*}Sodhi KS et al. Rapid lung MRI - paradigm shift in evaluation of febrile neutropenia in children with leukemia: a pilot_study. Leuk Lymphoma. 2016 Jan;57(1):70-5

 ^{*}Sodhi KS et al Rapid lung MRI in children with pulmonary infections: Time to change our diagnostic algorithms. J Magn Reson Imaging. 2015 Nov 6.

MASSES/METASTATIC NODULES

+C LUNG CT

+C LUNG MRI

Congenital Thorax Malformations

- Pulmonary sequestration
- CPAM
- Congenital lobar emphysema
- Bronchogenic cyst, Duplication cyst of esophagus
- Congenital diaphragmatic hernia
- Diaphragmatic eventration
- Pulmonary vascular malformations
- Bronchial atresia
- Pulmonary hypoplasia
- Pulmonary agenesis

Key Points to Image Effectively

- Fast (Use Fast T2 sequences to reduce sedation need, examination time)
- Clear (Avoid breath-motion artefacts)
- Coverage (Axial, Coronal or Sagittal)
- Definitive (Add sequences: FS,STIR, DWI or contrast)